'/> Jenis-Jenis Dan Sifat-Sifat Akar Persamaan Kuadrat Serta Teladan Soal

Info Populer 2022

Jenis-Jenis Dan Sifat-Sifat Akar Persamaan Kuadrat Serta Teladan Soal

Jenis-Jenis Dan Sifat-Sifat Akar Persamaan Kuadrat Serta Teladan Soal
Jenis-Jenis Dan Sifat-Sifat Akar Persamaan Kuadrat Serta Teladan Soal
Soal Sifat Akar Persamaan Kuadara - Dalam tutorial pembelajaran matematika kali ini, kita akan mempelajari bahan wacana sifat-sifat akar persamaan kuadrat.

Akar-akar persamaan kuadrat sanggup berupa bilangan real (sama atau berlainan), bilangan imajiner, bilangan rasional maupun bilangan irasional.

Sifat-sifat akar persamaan kuadrat sanggup berupa bilangan positif, bilangan yang bernilai negatif ataupun bilangan-bilangan yang sama besar dan juga bilangan-bilangan yang berkebalikan.

Jenis-Jenis Akar Persamaan Kuadrat

Suatu persamaan kudarat ax2 + bx + c = 0 mempunyai akar-akar berupa x1 dan x2 dan nilai determinan (D) = b2 - 4.a.c

Nah, dari akar-akar dan nilai determinan suatu persamaan kuadrat, kita sanggup mengdeskripsikan jenis-jenis akar persamaan kuadrat yang dihubungkan dengan nilai diskriminan.

Hubungan Nilai Diskriminan dengan Jenis Akar Persamaan Kuadrat
Nilai Diskriminan Jenis Akar Persamaan Kuadrat
D > 0 Dua akar real yang berbeda
Jika D bilangan kuadrat, maka akar-akarnya rasional
Jika D bukan bilangan kuadrat, maka akar-akarnya irrasional
D = 0 Dua akar yang sama (kembar)
D < 0 Tidak mempunyai akar real atau kedua akar tidak real (imajiner)


Sifat-Sifat Akar Persamaan Kuadrat

Berikut ini yaitu tabel hubungan antara akar-akar x1 dan x2 pada persamaan kuadrat ax2 + bx + c = 0.
Sifat-Sifat Akar Persamaan Kuadrat
Hubungan Akar-Akar Syarat
x1x2
Kedua akar real posifit + + x1 + x2 > 0
x1 . x2 > 0
D ≥ 0
Kedua akar real negatif - - x1 + x2 < 0
x1 . x2 > 0
D ≥ 0
Kedua akar berlawanan tanda +
-
-
+
x1 . x2 < 0
D > 0
Kedua akar real berlawanan x1 = -x2 x1 + x2 = 0
x1 . x2 < 0
D > 0
Akar yang satu kebalikan akar yang lain x1 =
1 / x2
x1 . x2 = 1
D > 0

Contoh Soal

Soal No.1
Tentukanlah jenis-jenis akar persamaan kuadrat di bawah ini:
A. 2x2 – 7x + 6 = 0
B. x2 – 6x + 12 = 0
C. x2 – 4x + 1 = 0

Pembahasan
A.2x2 – 7x + 6 = 0
Dari persamaan kudarat tersebut kita dapatkan nilai :
a = 2
b = -7
c = 6

Lalu kita cari nilai determinannya :
⇔ D = b2 - 4.a.c
⇔ D = (–7)2 – 4(2)(6)
⇔ D = 49 – 48
⇔ D = 1
Makara akar-akar persamaan kuadrat di atas yaitu real yang berbeda dengan kategori rasional


B. x2 – 6x + 12 = 0
Dari persamaan kudarat tersebut kita dapatkan nilai :
a = 1
b = -6
c = 12

Lalu kita cari nilai determinannya :
⇔ D = b2 - 4.a.c
⇔ D = (–6)2 – 4(1)(12)
⇔ D = 36 – 48
⇔ D = -12
Makara akar-akar persamaan kuadrat di atas yaitu tidak positif (imajiner)


C. x2 – 4x + 1 = 0
Dari persamaan kudarat tersebut kita dapatkan nilai :
a = 1
b = -4
c = 1

Lalu kita cari nilai determinannya :
⇔ D = b2 - 4.a.c
⇔ D = (–4)2 – 4(1)(-1)
⇔ D = 16 + 4
⇔ D = 20
Makara akar-akar persamaan kuadrat di atas yaitu real yang berbeda dengan kategori irrasional


Soal No.2
Carilah nilai m jikalau persamaan kuadrat (m + 1)x2 − 8x + 2 = 0 mempunyai akar kembar

Pembahasan
Dari persamaan kuadrat (m + 1)x2 − 8x + 2 = 0, kita dapatkan :
a = m + 1
b = −8
c = 2

Agar kedua akar mempunyai akar kembar :
⇔ D = 0
⇔ b2 − 4.a.c = 0
⇔ (-8)2 − 4.(m + 1).2 = 0
⇔ 64 − 8m − 8 = 0
⇔ 56 − 8m = 0
⇔ −8m = −56
⇔ m = 7

Makara nilai m yaitu m = 7


Soal No.3
Suatu persamaan kuadrat (2p + 1)x2 + 25x + p2 - 14 = 0 mempunyai akar-akar yang saling berkebalikan. Jika nilai p > 0, tentukan nilai p yang memenuhi syarat > 0 ?

Pembahasan
Dari persamaan kuadrat (2p + 1)x2 + 25x + p2 - 14 = 0, kita dapatkan :
a = 2p + 1
b = 25
c = p2 − 14

Karena kedua akar saling berkebalikan (lihat tabel), maka:
⇔ x1 . x2 = 1
c / a
= 1
⇔ c = a

Masukkan (substitusi) nilai c dan a :
⇔ c = a
⇔ p2 − 14 = 2p + 1
⇔ p2 − 14 - 2p - 1 = 0
⇔ p2 − 15 - 2p = 0
⇔ (p − 5)(p + 3) = 0
⇔ p = 5 atau p = −3

Dalam soal disebutkan nilai p > 0, maka nilai p yang memenuhi yaitu p = 5
Advertisement

Iklan Sidebar